CONTENTS

Chapter 1. Introduction
1.1. Preliminary examples and remarks
1.2. Instability of inverse problems
1.3. Classic and Bayesian approaches to the problem of parameters estimation
1.4. Main results

Chapter 2. Linear model
2.1. General and standard models
2.2. Poissonian model
2.3. Formulation of inverse problem
2.4. Object’s principal components
2.5. Maximum likelihood estimate
2.6. Least squares estimate
2.7. Feasible region of estimates
2.8. Linear filtering of the maximum likelihood estimate
2.9. Optimal linear filter

Chapter 3. Bayesian methods
3.1. Wiener and related linear filters
3.2. Regularization according to Phillips and Tikhonov
3.3. Maximum entropy method
3.4. General remarks

Chapter 4. Restrictions imposed by information theory
4.1. Information inequality (scalar parameter)
4.2. Information inequality (vector parameter)
4.3. Fisher matrix
4.4. Notions of *information* and *entropy* in the Shannon theory
4.5. Information about originals for Gaussian ensembles

Chapter 5. Occamian approach
5.1. Initial premises
5.2. Image randomness test
5.3. Principal components
5.4. Truncated estimate of the object
5.5. Quasi-optimal filtering

Chapter 6. Image restoration
6.1. Models of image formation
6.2. Iteration procedures
6.3. Quasi-optimal filtering of non-negative objects
Chapter 7. Natural limit of resolving power of the optical systems
 7.1. Preliminaries
 7.2. Notion of limiting resolution
 7.3. Analytic results
 7.4. Monte Carlo simulations
 7.5. Concluding remarks

Chapter 8. Phase problem
 8.1. General formulation of the problem
 8.2. Formulation in a frame of diffraction theory of aberrations
 8.3. Explicit form of the Fisher matrix
 8.4. Maximum likelihood estimate of the Zernike coefficients

Chapter 9. Time series spectral analysis
 9.1. Notion of a time series
 9.2. Spectral estimation as a statistical problem
 9.3. Auto-regression processes
 9.4. Non-parametric estimation: smoothed estimates of spectral density
 9.5. Fisher matrix. The similarity law
 9.6. Optimal filtering of spectral density

Afterward

Appendix I. Some formulae of matrix analysis
Appendix II. Algorithm of Vigodner and Pervozvansky in the least squares problem
Appendix III. Derivation of the information inequality
Appendix IV. Transformation of Fisher matrix under linear transformation of parameters
Appendix V. Information and entropy of a Poisson random variable
Appendix VII. Pattern recognition under stochastic blurring of an object
Appendix VIII. Derivation of main relations for the optimal filter

References
Subject index